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HYDRODYNAMICS AND HEAT EXCHANGE IN VISCOUS INCOMPRESSIBLE LIQUID 

FLOW BETWEEN DISKS ROTATING IN A CYLINDRICAL CASING 

Yu. Ya. Matveev and V. N. Pustovalov UDC 532.526.75:518.61 

The article provides the results of a numerical investigation of convective heat 
exchange in a closed system consisting of two coaxial disks rotating at the same 
angular velocity within an immobile cylindrical casing. 

Improvement in the reliability of calculations of the thermal and thermal-stress condi- 
tions of turbomachine rotors requires, in particular, greater accuracy in assigning the 
boundary conditions of heat exchange at their end-face surfaces. Most of the theoretical, 
including numerical, investigations in this field were based on mathematical models utilizing 
cut-offparabolic Navier--Stokes equations. However, in many actual channels adjacent to the 
rotor surface, inertial forces produce return flow, which cannot be calculated by using 
methods based on boundary layer theory. A simplified model of one of such systems would be 
a cavity formed by an immobile cylindrical casing and two disks rotating at a constant angu- 
lar velocity. This problem has been solved in [1-3] for small Reynolds numbers (Re < 2"10 3 ) 
in the absence of heat exchange. 

In stating our problem here, we use the same simplifying assumptions as in [2, 3]: 
Steady-state laminar flow is contemplated, the velocity and temperature fields are assumed 
to be axisymmetric, and the thermophysical characteristics of the medium are considered to 
be constant. 

The flow geometry and the coordinate system are shown in Fig. i. 

The system of differential equations of convective heat exchange, written in terms of 
dimensionless variables, can be conveniently reduced to four equations with identical struc- 
tures [4]: 

o o (c~) + (RYES) + (RVz~) + d = o, 

where  ~/R, RV~, ~, and T a r e  c o n s i d e r e d  a s  t h e  s o u g h t  f u n c t i o n  ~. The c o r r e s p o n d i n g  v a l u e s  
of  t h e  c o e f f i c i e n t s  a ,  b ,  c ,  and d d e t e r m i n i n g  t h e  a c t u a l  fo rm of  t h e  e q u a t i o n s  i n  t h e  s y s t e m  
a r e  g i v e n  i n  T a b l e  1.  

The ro and 2nnro v a l u e s  a r e  u sed  as  t h e  c o o r d i n a t e  and v e l o c i t y  s c a l e s ,  r e s p e c t i v e l y .  

The s o l u t i o n  o f  t he  s y s t e m  of  e q u a t i o n s  (1) must  s a t i s f y  t h e  f o l l o w i n g  b o u n d a r y  c o n d i -  
t i o n s :  
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Fig. i. Flow geometry and 
the coordinate system. 

TABLE i. Coefficients of Equation (i) 
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R~ 07. 
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~F = O, RV~ = R ~, T =  1, Z = O, 

~ - - R F ~  ----- O, T =  1 - - Z r d / l ,  R = 1, 

ly  ___ O, RV~ = R ~, T = O, Z =  l /r , ,  

~F = R V ~  = a T / O R  = O, R = O. 

The boundary conditions for vorticity at the disk and casing surfaces and at the sym- 
metry axis are determined according to the method proposed in [5]. 

In solving numerically system (1), the Seidel method is used in combination with the 
lower relaxation after the equations have been integrated with respect to an elementary cell 
of the difference grid [4]. 

The relaxation coefficients are determined from the stability conditions and are cor- 
rected on the basis of numerical experiments. The Poisson equation for the stream function 
is solved by determining the relaxation coefficients in accordance with [6]. 

The convective terms are approximated by using a "hybrid" scheme consisting of a 
combination of central and directional differences [7]. 

One of the causes of divergence of the iteration process in calculations, which has been 
noted in [2], is the violation of one of the integral relationships of continuous media 
kinematics -- the Stokes equation. This results in the appearance of additional sources de- 
void of physical meaning, which have a purely difference origin; they increase considerably 
near the symmetry axis of the flow. The difficulties connected with the violation of the 
conservative nature of the difference scheme in a cylindrical coordinate system were resolved 
in [8]. The relationships derived there were used for the difference approximation of the 
initial equations (1). 

We tested the described method earlier during a numerical investigation of viscous 
liquid flow with heat exchange in a rotating radial convergent channel [9]. 

The above calculation method was used to solve our problem for larger values of the 
Reynolds number than in previous investigations. The Re = 10 5 value was used as an upper 
limit on the basis of the fact that, for Reynolds numbers of this order, transition from 
laminar flow conditions to turbulent flow is observed in systems similar to the described one 

17 



G 
- 5  

! 
b 

O.CO" 
q 6 

qs5 

�9 h 

Fig. 2. Distribution of dependent variables in 
the analyzed region: stream isolines ~'i04; 
L = l; a) Re = i02; b) 103; c) 104; d) 105; e) 
L = 0.5; Re = 104; f) L = 0.75; Re = i0~; g) 
isolines of the velocity vector's peripheral com- 
ponent RVr 2 (L = l; Re = 10s); h) isotherms 
(L = i; Re = 10s). 

[i0]. Since, for small L values, the liquid between the disks rotates virtually as a solid 
[3], we investigate here the 0.5 ~ L ~ i range, which is characterized by a substantial 
recirculation flow. 

Only uniform grids were used in calculations, since, in contrast to external flow 
around bodies, it is difficult to separate a priori regions of grid node bunching for the 
flow under consideration. A series of calculations for L = 1 on a 31 x 31 grid was per- 

formed first. Passage to a new, 41 x 41, grid did not produce a substantial change in the 
general character of flow in the cavity between the disks, except for insignificant variations 
in the integral characteristics, and this grid was, therefore, adopted as the basic one. 

Since the stability of the computational process depends considerably on the initial 
approximation, the fields of dependent variables obtained earlier for smaller Re numbers and 
stored in the external computer memory were used for each of the variants. 

The iteration process was discontinued when the following condition was satisfied: 

~7__ t7 [ max ~p < 10 -3, 
ij ii ] 

where p is the iteration number. The vanishing of the total thermal flux through the surfaces 
bounding the analyzed region was used as an additional convergence criterion. The existence 
of flow symmetry relative to the vertical plane passing through the middle of the cavity 
served as the physical accuracy criterion for the solutions. 

The variation in the convective flow structure as the Reynolds number increases is 
shown in Fig. 2 for L = i. The fields of dependent variables are shown with an allowance for 
symmetry only for the left-hand half of the region under analysis. We can conventionally 
separate two different forms of recirculation flow. For Re < 3"102 , the flow is character- 
ized by a two-vortex structure. Subsequently, two additional toroidal vortices arise near 
the symmetry axis, the intensity and the meridional cross-sectional area of which increase 
with the Reynolds number, whereas the intensity and the meridional cross-sectional area of 
the external vortices diminish, while they themselves are forced back toward the peripheral 
boundary of the cavity. For Re ~ 5"103 , a flow region with very weak recirculation develops 
near the rotation axis, where the liquid rotates virtually as a solid. If the disk rotation 
frequency increases still further, this region expands and, for Re = i0 s, encompasses the 
lower third of the cavity. 
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Fig. 3. Local (a) and mean (b) heat transfer at 
the heated disk surface. For a: i) Re = i00; 2) 
103; 3) 5"103; 4) i0~; 5) 5"104; 6) 105; for b: 
I) L = i; 2) 0.75; 3) 0.5. 

The streamline distribution calculated for Re = 1000 is in good qualitative and quanti- 
tative agreement with those obtained earlier in [2, 3] with uniform ii x ii and 16 x 16 
grids. The fields of isolines of the velocity vector!s peripheral component and of the iso- 
therms complete our general idea of the character of the flow. It is evident that the re- 
gion of elevated local heat transfer at the disk surface and the region of the highest vortex 
intensity in the cavity are mutually related (Fig. 3a). 

Calculations have shown that similar variation of the convective flow structure in the 
cavity between the disks generally occurs also for other relative width values in the in- 
vestigated range. At the same time, the limiting Reynolds number Re* for which a four-vortex 
structure develops increases as L decreases. The intensity of additional vortices and their 
meridional cross-sectional area decrease (Fig. 2e and f), so that this structure apparently 
does not arise for L < 0.5. 

One should expect on the basis of physical considerations that the intensity of the 
basic recirculation flow is at a maximum for a certain relative width of the clearance be- 
tween the disks L m. Actually, as was mentioned above, the spinning of the liquid by the 
disks for small values of L conforms to the rotation law for a solid, and secondary flow is 
absent. On the other hand, the surface area of the casing -- the braking factor in this hy- 
drodynamic system -- increases for large values of L, which also reduces the secondary flow 
intensity. Analysis of the calculation results suggests that the value of L m is close to 
0.75. 

The dimensionless drag torque coefficient of the disks is determined by the expression 
[3] 

I 

4~ [ a (V~R) RSdR" 
Cm: ~ o" aZ 

0 

The calculation results are satisfactorily approximated by the following relationship: 

c m :  - -  16.87L-2:~L-o.471Re-O-S61" 

The temperature field established in the process of calculations is used to determine 
the dimensionless thermal fluxes at the disk and casing surfaces, which are characterized by 
mean Nusselt numbers 

I 1 

0 0 

I 

�9 O R / ~ = ~  
0 
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Under steady-state conditions, the thermal balance relationship ~ = 0 holds: it was 
i=I 

sanisfied with an accuracy to 0.01 for each of the calculated temperature fields. For the 
chosen thermal boundary conditions, the relationships Nu: = Nu= and Nu3 = 0 were satisfied 
for all the calculated variants. 

Figure 3b shows the variation of the mean heat transfer from a heated disk with an in- 
creasing Reynolds number for different relative widths of the clearance between the disks. 
Each of the curves has a pronounced inflection for Re numbers close to Re*. The development 
of an additional vortex pair near the horizontal symmetry axis and its effect on the heat 
transfer due to the initial recirculation flow (as a result, the temperature of the liquid 
particles washing the peripheral regions rises) reduce the rate of increase in the mean heat 
transfer from the disk surface. It should be noted that a similar effect was observed in 
experimental investigations of thermal convection in a rotating closed cylindrical cavity 
for the same thermal boundary conditions involving a multivortex structure of secondary flow 
[ii]. 

The calculation results are satisfactorily approximated by the following system of 
similarity equations: 

R e < 1 0  = NUl/NU o =  1, 

10 ~ ~ Re ~ 10 ~ Nu~/Nu o = 0.16 Re ~176 ig L, 

104 ~ Re ~ 105 Nu jNuo=  0,00873L-1 .ralg LRel,Oga--o,os91gR," 

The accuracy of the relationships describing convective heat exchange in the investi- 
gated system is limited essentially by the scope of application of the chosen mathematical 
model of liquid flow, which, in turn, can probably be determined only by physical experi- 
ments. As these are lacking, the results obtained for large Reynolds numbers (Re > i0 ~) 
would probably require refinement by taking into account the turbulent transfer effects and 
introducing additional measures for reducing the errors due to difference approximation. 

NOTATION 

ro, outside radius of disks; l, casing width; n, rotation frequency; t, and t=, tem- 
peratures of the disk surfaces (t: > ta); r and z, radial and axial coordinates, respec- 
tively; V z, Vr, and F~, axial, radial, and tangential components of the velocity vector, 
respectively; Z = z/ro; R = r/ro; L = I/ro; T = (t -- ta)/(t, -- t=), temperature; Re = 
2~nr~/~, Reynolds number; ~, kinematic viscosity; Pr = VpCp/%, Prandtl number; 0, density; 
%, thermal conductivity coefficient; Cp, specific heat at constant pressure; m = ~Vr/~Z -- 
~Vz/~R , tangential component of the velocity vortex; ~, stream function; RVr = --3~/~Z; RV z = 
~/~R; Cm_t dimensionless drag torque coefficien~ of the disks; Nu = ~r/~, local Nusselt 
number; Nu = ~ro/%, mean Nusselt number; ~ and ~, local and mean heat exchange coefficients, 
respectively. Subscripts: i, left-hand disk; 2, right-hand disk; 3, casing; 0, case in- 
volving only thermal conductivity (Re = 0); m, maximum value. 
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SOLUTION OF LIMITING PROBLEMS OF EXPANDING FLOWS OF GASEOUS 

SUSPENSIONS 

I. M. Yur'ev UDC 532.529.5 

The equations of equilibrium expanding flows of a gaseous suspension with an 
arbitrary volume concentration of particles are transformed into the equations 
of an expanding ideal gas and, in particular, in the two-dimensional stationary 
case, into the linear Chaplygin equations. 

Studies of limiting motions, for example motions with equal velocities of the soil and 
of the gas expanding into its pores, or equilibrium flows, when not only the velocities but 
also the temperatures are equal, help to elucidate the important qualitative features of 
the flows of dispersed media and sometimes permit obtaining results with satisfactory accu- 
racy. 

The motion of an equilibrium mixture is described, generally speaking, by the system of 
equations for a single-phase, continuous, imperfect-gas medium (see, for ~xample, [i]). The 
perfect-gas equations are obtained from this system only in the case of a low volume concen- 
tration of particles and in the absence of phase transitions, which permits applying the 
analytical apparatus of classical gas dynamics [I, 2]. 

The results of this work follow from the representations of the mechanism of the phe- 
nomena given by S. A. Khristianovich in his research on the properties of dispersed flows 
for the example of nonstationary one-dimensional flows of soil and gas contained in its pores 
[3, 4]. 

We study below motion in a space with interphase heat exchange. For large volume con- 
centrations of particles, we restrict ourselves to expansion flows dp/dt. 

In gas dynamics, an example of an expanding flow is the motion of a gaseous suspension 
in a nozzle. 

The equations of an ideal perfect pseudogas with an arbitrary volume concentration of 
particles, in particular, in the two-dimensional stationary case -- the linear Chaplygin equa- 
tions, are obtained for describing the limiting states of expanding flows of gaseous sus- 
pensions. 
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